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1. INTRODUCTION 

In computationdy intensive areas of science and 

engineering such as computational hydrodynamica 

which have been in existence for a long period of 

time, it is common for algorithmic improvements to 

contribute as much as hardware improvements to the 

efficiency of the calculations. Thii is to be expected 

from evolutionary improvementa and apart from my 

revolution in methods (such as might be caused by a 

reformulation of QCD ruit8bk for methods borrowed 

from quantum chemistryI). Monte Carlo methods 

for QCD calculations have indeed made enormous 

progress over the last ten years. However. they still 

are not adequate for convincing results on today’s 

computem Current calculations of the hadron spec- 

trum are done with too large a quark mass mp, and 

too large P lattice spacing a, and too small a phyai- 

cal volume V. This means that in addition to testing 

algorithms on the largest lattices possible. it is im- 

portant to understand how their performance scales 

with a. V. and m,. 

By critique in the title, I mean the attempt to 

understand the behavior of methods and approxi- 

mations using arguments outside the direct appli- 

cation of the methods. An ideal which we cm at 

present only partially achieve is to determine in ad- 

vance the expected behavior of algorithms and then 

to test the predictions numerically. An early paper 

assembling a priori arguments about the behavior of 

methods and approximations is Parisi’s “Prolegom 

ens to Any Future Computer Evaluation of the QCD 

Mass Spectrum”.’ Parisi’s tongue in cheek allusion 

to Kant’s metaphysics is appropriate: in this branch 

of lattice gauge theory, we arc studying the means 

to knowkdge about hadrons. rather than hadrons 

themselves. (Other ways in which the allusion may 

be appropriate will not be reviewed.) 

By practical. I mean that I will focus on the cur- 

rently most pmmiaing algorithms. FM a more en- 

cyclopedic classification, see Weingarten’s review at 

Lattice 86.3 In particular. I will not diicus promising 

metho& for simulation of Bose theories which have 

not been applied to full QCD. such as overrelaxation 

algorithms4 and cluster updating methodr5. 

To include the dynamical effects of the deter- 

minant of the Dirac matrix M, the small step size 

simulation algorithms which I will be discussing re- 

quire the derivative of the fermionic effective action 

with respect to the gauge field: 

F s & In det(MtM) (1.1) 

= T dMtM 
57&m-. U.2) 

Most methods for incorporating the fermionic 

force in equation 1.2 into QCD simulations introduce 

scalar fields with the quantum numbers of quarks. 

Weingarten and Petche$ proposed adding a term to 

the gauge action with the inverse of the sqared Dirac 

matrix between scalar fields: Se = -fQt&#. 

Path integration over the scalar fields produces the 

correct fermion determinant. The Cornell group7 in- 

troduced Gaussian random fields q with quark quan- 

turn numbers (fermionic noise). The trace in equa- 

tion 1.2 can be approximated by sandwiching the 

matrix to be traced between the r/t and q. Fucito 

*Presented at the 1989 Symposium on Lattice Field Theory, Capri. September 18-21. 1989. 
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et al.8 simulated over bosonic “pseudofermions” x 

with the original quark action, rather than its in- 

verse. The inverse matrix required in equation 1.2 is 

obtained from < xx+ >. The necessity of doing ma- 

trix inversions is replaced by the necessity of a Bose 

simulation at each update step. The first method 

is applicable only to sets of two equal-mass Wilson 

fermions or four equal-mass staggered fermions. The 

other two methods may be used with any number of 

fermions. 
l Fourier Acceleration.2* I2 P is taken to be a 

matrix diagonal in momentum space, such as 

1 the free propagator. Scalar field Fermionic force 

distribution 

Wein- 
t l xp[-;*+&a] ;*+&wg&@ 

garten. 

Petcher. 

Cornell ev[--++d !Y +1---- 8MtM 8 7 MtM 8” 9 
noise. 

Preudo- exp[-~x+M+Mx] %:<x taMtM > 
8” x 

fermionr. 

l Incomplete Lower Upper (ILU) decomposi- 

tion.13 If A can be written as A = 1 + L + U, 
where L is lower triangular and .!J is upper trian- 

gular, take P = (I+ wL)-‘(1 + wU)-~, where 

w is the overrelaxation parameter. 

The two most successful algorithms for quark 

propagators so far have been the minimum residual 

(MR) and conjugate gradient (CC) algorithms. The 

minimum residual algorithm is defined by The three approaches are summarized schemat- 

ically in the above table. The matrix inversion al- 

gorithms required for the first two approaches are 

discussed in section 2. Simulation algorithms used 

with all three methods are discussed in sections 3 

and 4. Pseudofermion Monte Carlo algorithms for 

estimating the trace in equation 1.2 are discussed in 

section 5. 

2. ALGORITHMS FOR QUARK PROPAGATORS 

There is a large literature on iterative methods 

for the solution of large sparse systems of linear equa- 

tions. This is the best understood component of 

QCD algorithms. 

In iteratively solving a sparse matrix equation, 

Af = b. the residual vector T; E b - Afi is used as 

a test of the deviation of the approximate solution 

fi from the true solution f. Contributions of small 

eigenvalues to pi are suppressed, and their associated 

eigenvectors take longer to converge. The conver- 

gence rate of an iterative algorithm may be roughly 

defined as the inverse of the number of sweeps re- 

quired for the norm of the residual vector or the er- 

ror vector (s f; - f) to drop by a factor of e. It 

is governed by the the “condition number” of A, 

n(A) = X,,,../X,,,;,,. (” of the lattice Dirac matrix 

is of order l/am,.) 

Convergence is improved if a preconditioning 

matrix P can be found such that n(PA) i< n(A), 
which is expected if P N A-‘. The solution of 

PAf = Pb is then much more rapid than the so- 

lution of Af = b. 
Examples which have been tried in lattice gauge 

theory are: 

a = riAr</jAr;l’, (2.1) 

CY’ = wa, 

fi+1 = fi + ah, 

r;+1 = t-i - afAri. 

If w = 1, each step minimizes ]~;]s along the direc- 

tion r;. Choosing 1 < w c 2 may improve con- 

vergence. The convergence rate is proportional to 

l/” of the matrix. Vectors p satisfying p;AtApj = 0 
are called conjugate with respect to AtA. Minimiza- 

tions along conjugate directions are independent, so 

that the MR algorithm using a complete set of mu- 

tually conjugate directions rather than the sequence 

of residual vectors for the test directions would con- 

verge in a finite number of steps in the absence of 

round off errors. Conjugate residual (CR(k)) algo- 

rithms use for the test direction the linear combi- 

nation of the residual and k previous test directions 

which is conjugate to those test directions. They 

converge somewhat faster than the MR algorithm 

and have similar properties. 

The conjugate gradient algorithm also proceeds 

by advancing in certain direction a distance which 
I’ 



minimizes a quadratic form. It is defined by 

Q = 14Z/~iA~i, 

fit1 = fi +api, 

Ti+1 = ri-aAri, 

P = ~~+,/~.1, 

(2.2) 

Pit1 = Pi + PTi. 

a is chosen to minimize the quadratic form F E 

$fAf - fb along the direction p;. p is chosen to 

make the new direction conjugate to the old one with 

respect to A, so that the current minimization does 

not spoil the previous one. The magic of conjugate 

gradient is that, if A is a symmetric, positive definite 

(SPD) matrix, none of the earlier minimizations is 

spoiled. This implies that fi is the minimum of F 

on the i-dimensional hyperplane defined by the direc- 

tions {b, Ab,AAb,. . . , A’-lb}. It then follows that 

the conjugate gradient method converges faster than 

a steepest descents method with any polynomial pre- 

conditioning. Hageman and Young” tell us that 

Chebyshev acceleration improves the convergence 

rate of iterative methods from 0(1/n) to O(l/&, 

which implies that conjugate gradient should do at 

least as well. The catch is that the Dirac matrix IV is 

not symmetric, so conjugate gradient must be used 

with MtM, which brings us back to an expected 

convergence rate of order amp. 

The expected behavior of the algorithms may be 

checked on an easy-to-understand toy problem. On 

a large n-dimensional diagonal matrix with diagonal 

elements (1, nt/“, xl/“, . . . , rc}, the expected depen- 

dence on K can be easily seen, and the convergence 

of both algorithms is very uniform. If a few very 

small eigenvalues are added, the convergence of min- 

imum residual has the expected dependence on the 

new condition number. Conjugate gradient, on the 

other hand, converges in roughly the same number 

of sweeps as were required without the new eigen- 

values. However, a plot of 7s vs. iteration number 

shows a long plateau followed by a steep cliff which 

is similar to behavior sometimes observed in lattice 

gauge theory. 

Conjugate gradient and minimum residual are 

thus expected (and observed) to converge roughly 

as l/x N am,. However, at small ms, for Wil- 

son fermions they are observed to behave differently. 

Conjugate gradient always converges unless one of 

the eigenvalues is within roundoff of zero. (Pre- 

sumably this means unless the condition number of 

M is of order the square root of machine precision 

or larger.) For small ms, the convergence exhibits 

plateaus and cliffs, and on a fixed sized lattice, the 

length of the plateaus is not very sensitive to ms. 

The minimum residual algorithm can fail to converge 

if r;Ari = 0 can be obtained when Ti # 0. This can 

occur if at least one eigenvalue of M has a nega- 

tive real part, which is typically the case for Wilson 

fermions at small m,. 

Other algorithms which are in principle com- 

petitive with these two are the successive overre- 

laxation (SOR) and symmetric successive overrelax- 

ation (SSOR) methods operating on the squared ma- 

trix WM. SOR is the Gauss-Seidel method with 

an overrelaxation parameter w. SSOR is the SOR 

method performed in alternating forward and back- 

ward directions. These methods may be considered 

IL (incomplete lower) and ILU preconditionings of 

the Jacobi method. The Gauss-Seidel method using 

the unsquared Dirac matrix M was one of the first 

methods used for calculating quark propagators. It 

is rarely used today since it is slower than and fails to 

converge earlier than the minimum residual method. 

On an SPD matrix like MtM, Gauss-Siedel is guar- 

anteed to converge, and furthermore converges as 

the square root of the condition number, like con- 

jugate gradient. (This square root dependence in 

overrelaxed minimization algorithms motivated the 

development of overrelaxed Monte Carlo simulation 

algorithms, which have a similar behavior.4) How- 

ever, there is no theoretical reason to expect SOR 

and SSOR to be superior to conjugate gradient, and 

they require careful tuning of the relaxation param- 

eter to achieve peak performance, so these methods 

have not been much investigated. 

2.1. Wilson fermions 

ILU preconditioning of the minimum residual and 

CR(k) algorithms with was proposed for QCD by 

Oyanagi,13 who found it to be an order of magni- 

tude faster than unpreconditioned conjugate gradi- 

ent in the region where minimum residual converged. 

The method was tested and compared with Fourier 

acceleration by Rossi. Davies, and Lepage, 15 who 
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Figure 1: With the MR-ILU method, natural ordering 

is much more effective than red-black ordering. Data 

are from Hackney, using Wilson fermions on a 16’ 

lattice at p = 6.1. 

found much less improvement. This difference was 

ascribed by Oyanagi to the order used in the two 

tests.16 The separation of the off-diagonal matrix 

elements into upper and lower triangular pieces is 

defined by an arbitrary ordering of the sites of the 

lattice. Possibilities include the natural ordering ad- 

vocated by Oyanagi and defined by i = (((t - l)n, + 

z - l)n, + y - l)n. + I. red-black ordering which is 

possible if interactions are nearest neighbor, the 16 

color ordering used by Rossi et al., and many others. 

Hockney17 has tested the MR-ILU algorithm 

with several different orderings on several lattice 

sizes and at several coupling constants, and has con- 

firmed Oyanagi’s results. As may be seen in fig- 

ure 1, the ILU method using natural ordering is much 

more effective than using red-black ordering, and for 

medium mass and heavy quarks is much more effec- 

tive than conjugate gradient with any precondition- 

ing. 

than as l/n. The theory given in Hageman and 

Young does not apply to the minimum residual al- 

gorithm on a non-symmetric matrix, but the depen- 

dence on the condition number may be tested ex- 

perimentally on free fermions where the condition 

is known exactly. As may be seen in figure 2, with 

careful tuning of the relaxation parameter (orequiva- 

lently, of the hopping parameter in the prccondition- 

ing matrix) MR-ILU shows the same fi behavior 

as SSOR.l* The graph shows the number of sweeps 

required to obtain 
$1 

T /V < lo-’ on a 6’ lattice. 

For interacting fermions, the sensitive dependence on 

the relaxation parameter observed for free fermions 

does not seem to occur, and the degree of speedup 

does not seem to depend sensitively on the pion mass 

as might have been expected from the free fermion 

results. More work is necessary to see if the fi 

behavior can be obtained in the interacting case. 

The dependence on ordering of sites is so large Since the minimum residual algorithm fails to 

that it is worth remembering one other algorithm in converge at light quark masses, it would be desir- 

which ordering makes a large difference. This is the able to find a preconditioning for the conjugate gra- 

SSOR method. Using natural order, but not red- dient method as effective as this. For the conjugate 

black order, this method converges as l/G rather _:. gradient algorithm, natural order is no better than 
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Figure 2: For free Wilson fermions. when the hopping 

parameter in the preconditioning matrix of the MR- 

ILU algorithm is carefully tuned by trial and error, 

the number of sweeps required for convergence rises 

as the square root of the condition number of the 

matrix, rather than as the linear power. 



red-black order, if the preconditionings are applied 

to M and Mt individually. Hageman and Young tell 

us that conjugate gradient and SSOR may be used 

together on an SPD matrix to produce an algorithm 

which depends on the fourth root of the condition 

number. It should therefore be possible in principle 

to find an algorithm combines the improved depen- 

dence on the condition number with the guaranteed 

convergence of conjugate gradient, but so far one 

hasn’t been found. Applying ILU preconditioning to 

the squared matrix MMt would be very complicated 

to program. 

The question of whether it is worth trying to 

find an algorithm which converges when minimum 

residual fails is worth considering. Simulations with 

very low quark masses on small volumes have poor 

statistical behavior, with some “exceptional” con- 

figurations often dominating the statistics. This is 

presumably due to fluctuations in the critical value 

of the hopping parameter which fall with increasing 

volume. Minimum residual fails when some eigenval- 

ues get a negative real part, which is related to the 

same effect. It may be that when minimum residual 

starts to fail, it should be taken as a warning that 

the physics may be sick there also, and that larger 

volumes are necessary at that quark mass. 

Several twists on the minimum residual method 

have been invesigated. If no overrelaxation is ap- 

plied in ILU preconditioning, the preconditioning ma- 

trix multiplication can be obtained with no addiional 

floating point operations.lg A higher order red-black 

ILU method has been investigated by Gupta et a1.l’ 

which does not improve the speed of the algorithm 

but has the interesting property that the quark mass 

at which it fails is half what is was for the ordinary 

red-black MR-ILU method. It would be interesting 

to know the effect of k in CR(k) conjugate resid- 

ual methods on the failure point. They also report 

that choosing w N 1.3 in equation 2.2 improves the 

convergence rate by about 30%. 

Hackney has tested Fourier acceleration of the 

conjugate gradient algorithm for several lattice sizes 

and coupling constants.17 He finds a factor of 2.5 

to 3 improvement on 8’ lattices at p = 5.7, consis- 

tant with the results of the Cornell group. However, 

he finds roughly the same factor improvement on 

all lattices, rather then the hoped for linear depen- 

dence of the improvement on the correlation length. 

He has also tested Fourier acceleration combined 

with red-black ILU preconditioning. He finds that 

the combination requires around 30% fewer sweeps 

than ILU by itself, which is not enough to make 

up for the computational overheads of the Fourier 

transforms on most machines. We therefore have 

the unexpected possibility that ILU preconditioning 

does more to reduce critical slowing down than does 

Fourier acceleration. It is possible that multigrid 

methods may prove useful for reducing critical slow- 

ing down, but these are complicated and have not 

yet been shown to be effective for QCD. 

Lanczos algorithms are identical to conjugate 

gradient algebraically, but have different round-off 

properties. Henty, Setoodeh, and Davies14 have in- 

vestigated a version of the Lanczos algorithm which 

uses the Hermitian matrix -ySM rather than positive 

definite, Hermitian matrix MtM (= (~sM)“). In 

their tests it was about 30-40% faster than the con- 

jugate gradient algorithm, and suffered less problems 

with roundoff error. The last fact may be important, 

since round off problems in the conjugate gradient 

algorithm sometimes make it “converge” to an in- 

correct answer, and since decisions about when to 

restart it require some artistry. They have also inves- 

tigated block versions of the two algorithms which 

calculate the matrix inverse for several sources at 

once, which will be useful for quenched calculations. 

2.2. Staggered fermions 

For staggered fermions, no effective precondi- 

tioner has been found. This is puzzling, at least to 

me. Rossi and Davies tried Fourier acceleration2’ 

with amazing lack of effect. Fukugita and Ukawa 

tried many preconditioners including several types 

of ILU. all without positive effect. 21 The squared 

staggered fermion matrix used in the conjugate gra- 

dient algorithm has the property that the red and 

black sublattices are completely decoupled.22 A sim- 

ple factor of two in speed is obtained by using only 

one of the sublattices, but the convergence rate in 

sweeps is not affected by this trick. 

As long as ms # 0, all staggered fermion eigen- 

values have a positive real part. Therefore, the fail- 

ure of the minimum residual algorithm at small rrzs 



cannot occur for staggered fermions as it does for 

Wilson fermions. The conjugate gradient and con- 

jugate residual algorithms were compared for stag- 

gered fermions by Fukugita et aLz3 They reported 

that the conjugate residual algorithm was a factor of 

1.7 faster than the conjugate gradient algorithm on 

their machine. They did not report using the trick of 

decoupled sublattices. If they did not use it, its use 

would make the performance of the two algorithms 

approximately equal. The behavior of the two algo- 

rithms at very low quark mass was not discussed. 

3. SIMULATION ALGORITHMS: CORRELATION 

TIMES 

3.1. Arguments from free field theory 

Our best current understand of the behavior 

of correlation times in simulation algorithms comes 

from perturbative arguments, but it it not yet clear 

that these arguments sufFice to explain the observed 

behavior of the algorithms. In free field theory, the 

action is diagonal in the Fourier transformed fields: 

S(4) = fjJC4sin'(T) t (~m)*)qQ$~ 

G f &- &&,. (3.1) 
P 

The low momentum modes undergo larger fluctua- 

tions than the high momentum modes. 

The Metropolis algorithm and the heat bath al- 

gorithm proceed by varying a small number of de- 

grees of freedom at a time. The size of the steps, 

which affect all modes equally, is controlled by the 

high momentum (large w) modes. The steps there- 

fore produce only small changes in the low momen- 

tum modes, which require many sweeps (of order 

N dtep, N (w,,,./w,,,~,,)~) to random walk to a new 

value. w,.,/w,i, is app roximately equal to the cor- 

relation length t. 

If the effects of quarks are to be included in the 

action, the Metropolis method requires a Dirac ma- 

trix inversion O(N) times per sweep of an N site lat- 

tice, Most simulations with dynamical quarks there- 

fore use small step size algorithms which require 

O(I) matrix inversions per sweep. The Langevin 

algorithm24 updates a field by taking a small step in 

a random direction and moving slightly downhill to 

maintain equilibrium: 

6s 
4 = 9L + ET1 - +&. (3.2) 

7 is a Gaussian random variable satisfying 

< qp)r$“‘) >= 6,,,,6,v for all time steps m and 

n and all sites z and y. E is related to the usual 

Langevin time step dt~ by dt~ = =?/2. The sys- 

tem requires l/(~w,,,)’ steps to random walk to a 

new value of the fastest modes which the Metropo- 

lis method randomizes in O(1) steps, and N.,,. - 

l/(cw,,,;,,)’ steps to random walk to new values of 

the slowest evolving modes. 

The scaling exponent 2 in the above expres- 

sion for N,*-, may be reduced to 1 by evolving the 

field configurations according to classical equations 

of motion rather than by a random walk. We intro- 

duce fictitious momenta ?r+ conjugate to the field 

variables & and consider a classical system with 

hamiltonian 

H = fdLy?ry + S(d). (3.3) 

O,, is usually, but not necessarily, taken to be the 

identity matrix. The equations of motion arising 

from this hamiltonian, using leapfrog discretization, 

are 

7r,(t + q2) = 7r.(t - E/2) - +q, (3.4) 

b(t + E) = d=(t) t EOly~v(t ; E/2). 

One step of the Langevin algorithm may be thought 

of as two half steps of a classical trajectory using 

these equations, with r(t) is drawn from the dis- 

tribution implied by equation 3.3. In the micro- 

canonical (or classical dynamics) algorithm,25 a sim- 

ulation run consists of one long classical trajectory. 

The classical dynamics method has poorer statis- 

tical behavior than the hybrid (or refreshed clas- 

sical dynamics) algorithm,26s 27 in which the mo- 

menta are periodically randomized. Duane argues 

that on long simulation runs, the statistical errors are 

dominated by the slowest evolving modes, and that 

therefore the optimal trajectory length is of order 

Ntvaj N I/(~u,,,;,,), which would give decorrelation 

times of N,rq. N Ntmj N l/(e~min). 
These small step size algorithms suffer from dis- 

I cretization errors which fall as some power of the 



step size E. In versions of these algorithms which are 

exactly reversible and area preserving in phase space 

(such as the leapfrog discretization, eqn. 3.4, of the 

classical equations of motion), step size errors may 

be removed by performing a Metropolis rejection on 

configurations generated by Langevin steps or hybrid 

trajectories.*** 2g In the hybrid Monte Carlo (or cor- 

rected hybrid) algorithm,*’ the momenta are cho- 

sen from the distribution defined by the first term in 

eqn. 3.3, the fields (4,x) are evolved some number 

of time steps to a new field configuration (4, r’), 

and the new configuration is accepted with a proba- 

bility 

P., = min(l,exp(IZ(r’,+‘) - H(R,~)). (3.5) 

In methods based on classical equations of mo- 

tion, it is not necessary to take the time scales of the 

gauge fields and scalar fields to be the same. Gottlieb 

et aL3’ proposed slowing the evolution of the scalar 

fields + to zero during each classical dynamics trajec- 

tory (which they called the “Q algorithm”). This has 

the significant advantage that the matrix inversions 

may be started from a guess derived from an extrap- 

olation of the previous matrix inverse. They found 

that this reduced the number of conjugate gradient 

sweeps required by a factor of 3-5. The scaling be- 

havior of this improvement factor is unknown. The 

fermionic noise method applied to the hybrid algo- 

rithm (the “R algorithm” of Gottlieb et al.) may be 

thought of as an infinitely fast evolution of the @ 

fields between each gauge field step. 

3.2. Smallscale tests 

If the length of the classical trajectory is much 

shorter than the shortest time scale in the system, 

d’t,aj < l/~maas the correlation time in sweeps 

should fall as l/G. I do not know of any at- 

tempts to check this dependence carefully. However, 

many tests in two dimensional models and in QCD on 

small lattices have shown qualitatively that a finite 

trajectory length in the hybrid method is preferable 

to either a single step trajectory (the Langevin limit) 

or an infinite trajectory length (the microcanonical 

limit). For example, Fig. 3 shows the autocorrela- 

tion time as a function of Nr7.j on a 4’ lattice with 

E = 0.01, fl = 5.9, and amq = 0.1.30 

Duane argues that in free field theory, the 
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Figure 3: The autocorrelation time T as a function 

of the number of classical dynamics steps Nd in a 

trajectory. 2’ has a minimum when Nd is larger than 

1 (the Langevin limit) but less than infinity (the mi- 

crocanonical limit). Data are for the + algorithm 

of Gottlieb et al. on a 4’ lattice with p = 5.9 and 

nap = 0.1. 

optimal value of Nt,.j is of order l/(~,,,;_).*~ 

In contradiction to this, numerical tests have 

usually found Nr,.j to be optimized at some- 

thing more like N,,.j - l/(~+,,,,).*~~ 30* 31 This 

changes the expected scaling behavior to Natep, - 

1/(E4n,. )(%4W,Q* which is disappointing. 

However, most of the tests have been done with a 

fixed trajectory length rather than the distribution 

of trajectories originally discussed by Duane for the 

hybrid. It is easy to see that in free field theory at 

least this leads to the observed behavior.32 Fig. 4 

shows the integer multiples nT of the periods 2’ of 

the modes of a free scalar field with m = 0.2 on an 

8’ lattice. For any fixed trajectory length 70 = ENtraj 
larger than 2x/w,,,.., there will be some modes with 

nT very close to rO. These modes will change very 

little under a classical dynamics trajectory of length 

ro. Tests with a free scalar field show that the hybrid 

Monte Carlo method fails to equilibrate after a large 

number of trajectories with a fixed long trajectory 

length T - l/w,,,i,, but equilibrates nicely with a 

random distribution of long trajectory lengths.32 It 

is therefore important to use a distribution of trajec- 

tory lengths when optimizing the average trajectory 

length. 
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Figure 4: Integer multiples nT of the periods T of 

the modes of a free scalar field with m = 0.2 on an 

@ lattice. The distribution is dense above a certain 

T7li?%. 

3.3. Largescale tests 

Two groups have attempted to compare the ef- 

ficiencies of the Langevin and hybrid Monte Carlo al- 

gorithms in full scale tests. The Langevin algorithm 

used in the comparisons was a “partial second or- 

der” algorithm which removes some but not all of the 

second order errors.j3 It does not remove errors in 

the fermionic sector which are thought to dominate 

at low m4. The two groups reached seemingly op- 

posite conclusions: Fukugita et al.34v 35 estimated 

that Langevin was around five times as efficient as 

hybrid Monte Carlo, while Gupta et aLlo estimated 

a similar factor, but in the opposite direction. 

that the relative accuracy of the statistical errors 

on this quantity must be at least of order 1. Simi- 

lar plots for the Langevin algorithm do not seem to 

show such obvious correlations, 35 but it is difficult 

to guess the significance of such eyeball error esti- 

mation. 

A reasonable temporary conclusion is that 

Langevin and the hybrid have been shown to be 

comparably efficient at the order of magnitude level, 

but without more detailed understanding of errors, 

it is not possible to conclude more at present. Quite 

apart from the question of finding the best algo- 

rithm, it is disconcerting that the statistical errors 

from largefull QCD simulations cannot be taken very 

seriously in the presence of such long and not under- 

stood correlations. 

3.4. Further work 
There are quite a few assumptions in the com- 

parisons which may contribute to the apparent dis- 

crepancy, but the most important factor which 

makes comparison difficult at present is poor statis- 

tics and lack of statistical information in the pub- 

lished data. When comparing the efficiencies of al- 

gorithms, it is the statistical error bars on physical 

quantities which are compared. This means that to 

estimate the statistical reliability of the comparisons, 

we need to estimate the accuracy of the error bars: 

we need error bars on the error bars. These have 

almost never been published up to now. Figure 5 

shows the evolution of the plaquette as a function 

of classical dynamics time in a hybrid Monte Carlo 

run.36 It shows obvious correlations lasting hundreds 

Free field theory arguments lead to the expec- 

tation that that the hybrid and hybrid Monte Carlo 

algorithms should be far superior to the first order 

Langevin algorithm: 

~~ 

w,,,,, is of order one in lattice units, (Wm,,/‘Wmin) is 

probably of order 5-10 in QCD simulations, and E is 

usually around 0.01-0.05. 

Although the large scale tests are not fully reli- 

able statistically, it is still fair to say that the order of 

macnitude suoerioritv of hvbrid over Lanaevin which of trajectories, the length of the run. This implies ~~~~~ ~~~~ 

Figure 5: Some data for hybrid and hybrid Monte 

Carlo simulations show correlations lasting hundreds 

or thousands of trajectories. Here, the hybrid Monte 

Carlo data of the LANL collaboration show the evo- 

lution of the plaquette as a function of classical dy- 

namics time. 



might have been expected for small E has not yet 

shown up. On the contrary, there is evidence for cor- 

relations lasting hundreds of classical dynamics time 

units which are not expected from free field theory. 

It is possible that nonperturbative effects are re- 

sponsible for the very long correlation times in hybrid 

and hybrid Monte Carlo. On the other hand, there 

is much unused freedom in the formulation of the al- 

gorithms. I have already mentioned that the use of 

a fixed trajectory length can be catastrophic. I don’t 

know of any experimentation with distribution of tra- 

jectory lengths in QCD, but in tests for QED simu- 

lations, Kogut and collaborators found that careful 

choosing of the distribution of trajectory lengths was 

crucial in obtaining reasonable correlation times for 

the low momentum photon propagator. 37 

Another example has to do with ergodicity in 

the short wavelength modes. It is sometimes argued 

that long trajectory lengths are ineffective in the 

hybrid and hybrid Monte Carlo algorithms because 

short wavelength modes with similar frequencies will 

tend to stay correlated during a long trajectory. The 

KAM (Kolmogorov-Arnold-Moser) theorem is some- 

times invoked to motivate worry about ergodicity. 

It says that systems of oscillators with sufficiently 

small perturbations are not ergodic. However, the 

KAM theorem is unlikely to be rigorously applicable 

for two reasons. First, it should become inapplicable 

for large enough perturbations, and it is a reasonable 

guess that for lattice QCD, this may occur at the de- 

confining transition. Second, even when applicable, 

it deals with ergodicity in the full phase space. We 

require that every point in the configuration space be 

reachable, but are less concerned with correlations 

in the space of the fictitious momentum variables. 

A classical mechanics theorem which may be more 

relevant for us is the theorem on the averages. 38 It 

states that for a set of harmonic oscillators with inde- 

pendent frequencies (all frequency ratios irrational), 

the average of a function of the coordinates over 

time is the same as the average of the function over 

space. This implies that the motion is dense in con- 

figuration space, even if the modes are decoupled. 

From this point of view, the choice of 0,s E 1 in 

equation 3.3 is very bad, in that in free field theory 

it ensures large numbers of modes with identical fre- 

quencies. A better choice would be to take O,, to 

have diagonal elements randomly distributed in some 

range, so that even in free field theory, trajectories 

will be dense in configuration space (though not in 

phase space). 

A similar point may be made concerning the ex- 

ponent of K. in equation 3.3.3g The quadratic form 

is familiar from real physical systems, but may be 

much worse than a quartic form or some distribu- 

tion of exponents for ensuring a rapid randomizing 

of the configuration. A nonquadratic kinetic energy 

term would also help to produce a rapid exchange of 

energy between modes. 

It may be that after the most sophisticated tun- 

ing of the algorithms along these lines, corrleation 

times are still much longer expected from free field 

theory arguments. For example, it may be that long 

tunneling times are required to move between dif- 

ferent topological sectors of the path integral. Some 

hint that this may be a factor comes from the experi- 

ence of the Grand Challenge spectrum collaboration, 

who find that very long correlations are much more 

obvious in measurements of the topological suscep- 

tibility than in measurements of hadron masses.40 It 

is known that in compact QED, the presence of non- 

local topological structures such as monopole loops 

causes extremely long correlation times. 41 Their im- 

portance decreases as the volume increases. Such 

structures may be important in nonabelian gauge 

theory as well.42 If topological effects in QCD which 

do not vanish at large volumes are responsible for 

very long correlation times, further improvement may 

be impossible without new physics ideas to encour- 

age tunneling between topological sectors. 

3.5. Correlation lengths 

In free field theory, the ratio w,,,/w,;, which 

governs correlation times is of order the correlation 

length of the system. In this subsection, I discuss 

complications which occur for full QCD. 

The Cornell group has shown in tests with 

pure gauge theory that Fourier acceleration of the 

gauge dynamics can improve the performance of 

the Langevin algorithm.43 The hybrid and hybrid 

Monte Carlo algorithms may be Fourier accelerated 

by taking O,, in equation 3.3 to have off diagonal 

elements.44 If fermion loops are included, the gauge 



fixing overhead required for Fourier acceleration is 

masked by the time spent for fermion matrix inver- 

sion, so it might be that the method is useful even if 

it produces a constant factor of improvement rather 

a change in the scaling exponent. On the other hand, 

inclusion of fermions presents new problems which 

cannot be analyzed in weak coupling (which is where 

we get our intuition about Fourier acceleration). It 

seems to be the case that the step size in simulation 

algorithms is limited by the effects of the small, non- 

perturbative eigenvalues of the Dirac matrix, rather 

than by the high momentum gauge field modes as 

in pure gauge theory. The derivatives of the inverses 

of these small eigenvalues with respect to the gauge 

field modes is not obvious. so it is not obvious how 

to choose an acceleration function. Therefore, the 

appropriate acceleration function may have to be in- 

vestigated numerically by calculating the momentum 

spectrum of the force on the gauge field produced 

by the fermion part of the action, equation 1.2. 

what occurs in practice when the action is nonlocal, 

and whether relevant correlation length is the pion 

Compton wavelength or the QCD scale, remain to 

be demonstrated. 

An additional complication is that physical quan- 

tities are expected to approach finite limits in QCD 

as the pion mass approaches zero. Therefore, as pion 

modes with longer and longer wavelength are added 

to the system by reducing the quark mass, even if 

they are poorly averaged they may have little effect 

on physics. 

The related question of the dependence of cor- 

relation times on correlation lengths is similarly 

more complicated when fermions are included. The 

usual intuition about the relation between correlation 

lengths and correlation times may not be valid in the- 

ories with nonlocal actions. The most obvious guess 

is that correlation times are governed by the longest 

correlation length in the system, the pion Compton 

wavelength in QCD. The usual folklore that simula- 

tion correlation times rise as a power of the correla- 

tion length (the linear power in the case of the hybrid 

family) depends on the fact that the longest wave- 

length modes produce the smallest force terms in the 

simulation algorithms. However, as we have seen, 

the force terms in full QCD are thought to be dom- 

inated by the small eigenvalue modes in the Dirac 

matrix which are related to chiral symmetry break- 

ing and the long wavelength propagation of the pion. 

It is not obvious that these modes evolve slowly. A 

numerical investigation of the Fourier transform of 

the fermionic force, equation 1.2, might shed light 

on this question. too. 

4. SIMULATION ALGORITHMS: DEPENDENCE 

OF THE STEP SIZE ON V. a, and mp 

4.1. Volume dependence in hybrid Monte Carlo 

4.1.1. The leapfrog method 

The V dependence of the step size in hybrid 

Monte Carlo was derived by Gupta, Kilcup, and 

Sharpe45 extending arguments due to Creutz 46 

They show that in order to keep constant accep- 

tance, l must be decreased as N.iteel” - at’-If’, 
where V is the physical volume of the lattice. 

Creutz’s version of the argument employs the for- 

mula 

<HI-H >=; < (HI-H)‘> +O((H’-H)3). 

(4.1) 
With the leapfrog method, < (H’- H)” > is O(8). 

If the volume is larger than the correlation length, 

it is an extensive quantity. (By using the formula 

aV-I/’ rather than simply I’-‘/’ I am jumping to 

the conclusion that correlations between the degrees 

of freedom do not affect the argument. which may 

or may not be justified.) This implies an acceptance 

probability falling as 

Pa, - exp(-CN.;t. c4), (4.2) 

Naively, correlation times are expected to rise 

linearly with the correlation length in the hybrid al- 

gorithm, and rise quadratically with the correlation 

where C is an unknown constant. 

4.1.2. Higher order hybrid Monte Carlo 

Methods for integrating the classical equations 

of motion which are accurate to a higher order than 

the es of the leap frog method will yield a hybrid 

Monte Carlo with computing requirements growing 

as a weaker function of the volume than T - V”‘. 
Kennedy has investigated methods for explicitly deal- 

length in the Langevin algorithm. Whether this is ’ ‘Y” . .._ ..-.. ~..~ ~~~~~, in. with the comnlicated corrections to the action 



generated by finite step size.47 A simple method for 

reducing these errors has been suggested by Cam- 

postrini and RossL4* and has been extended and 

explained by Creutz and Gocksch.4g The method is 

to take i steps in the forward direction, one larger 

step back, and then i more steps forward. If a dis- 

crete transformation on phase space 

T,,(e) = exp(a e) + Ae”+r + . . (4.3) 

has errors of order e”+l, then a combined transfor- 

mation 

T,+z((2i - s)c) f Tn(qTn(-3E)Tn(Ey (4.4) 

has errors of order e”t3 if s = (2i)A. If ‘7s is 

taken to be the ordinary leap frog method, the 

method may be iterated to remove step size er- 

rors to any desired order. As the number of de- 

grees of freedom is increased, it becomes profitable 

to go to higher iterations of the method. Creutz and 

Gocksch estimate computer time requirement grow- 

ing as TN Vexp(&T). 
Creutz and Gocksch have tested their higher or- 

der algorithms on the Hubbard model with a rela- 

tively small (0(103)) number of degrees of freedom. 

They found that the lowest order leap frog method 

was “hard to beat”. For the much larger lattices 

used in QCD simulations, the higher order method 

may still be important, but see the next subsection 

on the effects of fermions. 

4.1.3. Analytic calculation of acceptance in 

free field theory 

For free field theory, acceptance rates in hybrid 

Monte Carlo and Langevin Monte Carlo may be cal- 

culated analytically.50 The acceptance rate in these 

calculations has the form P,, N erfc(Cm), 

where erfc is the complement of the error function, 

C is a calculable constant, and N is the number of 

degrees of freedom. cr is obtained from a sum over 

the frequencies to some power: (T = + Cws. 

It should be possible to calculate the acceptance 

rate for a four dimensional lattice of free gluons, and 

to determine the lattice volume at which it would be- 

come more efficient to perform hybrid Monte Carlo 

simulations with the second order Campostrini and 

Rossi method, rather than the leap frog method. 

This might yield some intuition about the expected 

behavior of the algorithms in real QCD simulations. 

4.2. Dependence on a and ms in Langevin, hy- 

brid, and hybrid Monte Carlo 

Perturbative analysis does not explain the a and 

ms dependence of the step size. It is well estab- 

lished numerically that as ms -+ 0, the step size E 

must also approach zero if systematic errors or ac- 

ceptance are to remain constant in Langevin, hybrid, 

and hybrid Monte Carlo. For example, Gupta 51 re- 
ports that he and his collaborators needed to use 

E = 0.06, 0.026, 0.011 at amp = 0.1, 0.05, 0.025 
in order to maintain 70% acceptance. This would in- 

dicate that for HMC, e must be reduced as a power of 

amp between 1 and 1.5. Similar results have been re- 

ported for the Langevin52 and hybrid53 algorithms. 

The form of the finite step size corrections has 

been derived for some algorithms. When the action 

s = sgeupe +iPr-&a is used, they have a relatively 

simple form. For the Langevin equation, Fukugita, 

Oyanagi, and Ukawa33 give for the fermionic cor- 

rections to the action induced by the finite step sire 

as 

As = Le= -&t 1 
1 4 MtMMtM 

Q+2T&- , 1 
(4.5) . , 

Both terms are of order &. For the hybrid al- 

gorithm using one particular form of the leapfrog 

method, Duane and Kogut27 give 

1 
AS = +Tr~. 

MtM 

Different forms of the leap frog method may give 

different error terms.45 

For the fermionic noise method, there are addi- 

tional errors induced which cannot be expressed as 

corrections to the action.54 For hybrid Monte Carlo, 

Gupta et a1.l’ give a schematic argument based on 

counting powers of l/M that E should be decreased 

as (m,)f to maintain constant acceptance, if long 

trajectory lengths are used. 

A naive power counting estimate suggests that 

TT’ MtM is dominated by the smallest eigenvalues of 

M and diverges as l/(ums)” as omq -+ 0. This has 

led to the guess that E must approach zero as amq 

to maintain constant systematic errors. However, for 

staggered fermions at.least, we can actually evaluate 

the expressions for the errors in equations 4.5 and 

4.6, and find a different answer. The eigenvalues for 



the staggered fermion Dirac operator can be written 

iX + ants. We can write the chiral condensate as 

2<GWT-& = c, 
1 

ax + amp (4.7) 

= c A1 +a;m*)2 44.8) 

This means that the trace in the error term, equation 

4.6, has the form 

1 
Tr---- 

MtM = c x1 + (tamq)’ - a3 ;zq- ‘. 

(4.9) 
If this term dominated the error, in the chirally bro- 

ken phase E would have to be decreased as l/Jma 

rather than as l/m, to maintain constant errors. 

In the chirally symmetric phase, where perturbation 

theory is valid, the error term stays finite as m, -t 0. 
meaning that e does not have to vanish with me. The 

naive power counting argument is therefore wrong in 

this case, but the idea that adding a power of l/M 
adds a power of l/(ams) is partly right. If it is 

true that in the power series for the errors, adding 

a power of c adds a power of l/M and that adding 

a power of l/M adds a power of l/(ome), then it 

could still be true that E must be reduced as ame 

to maintain the stability of the power series. The 

data cited above is for the Langevin and hybrid al- 

gorithms with fermionic noise, and for hybrid Monte 

Carlo. They mostly agree better with e N ms than 

with E N Jma, but the statistical accuracy of the 

results may not be high. 

The MT, collaboration has produced a phe- 

nomenological graph showing the effects of several 

parameters on the the acceptance rate in hybrid 

Monte Carlo56 (figure 6). The graph was developed 

more to guide the choice of parameters in simulation 

runs than to test theories about hybrid Monte Carlo. 

It shows that the acceptance rate from all the runs 

lies on an approximately universal curve when plot- 

ted against the phenomenologically obtained func- 

tion E (2~) 2/3V’~‘(m,)-‘, where the dimensionful 

quantities are presumably measured in lattice units. 

In these runs, ms varied by a factor of five, V by a 

factor of nearly 4’. zx varied by an order of magni- 

tude since some of the runs were confined and some 
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Figure 6: The hybrid Monte Carlo acceptance 

rates for many runs of the MT, collaboration lie 

on an approximately universal curve when plotted 

against a phenomenologically obtained function .z = 

E (~x)‘W’~‘(m,)-1. 

precisely what is expected and the dependence on 

m, is in the reasonable range. It is interesting to see 

a strong dependence on xx as suggested by equation 

4.9, although the exponent is different. It would be 

very interesting to get some guesses as to the reason- 

able range for this exponent and the others suggested 

by these data. (This may not be straightforward in 

practice since the data are not statistically consis- 

tent, as they need not be for such a phenomenolog- 

ical function.) 

If the right variable in the function for the accep- 

tance rate were really that given by the MT. collab- 

oration, the factors of a going along with the dimen- 

sionful quantities would imply that E did not need 

to be reduced as a -+ 0. which would be very nice. 

It may be more likely, however, that powers of V 
and < ‘@I! > do not go hand in hand with powers 

of ame, and that the right function is more compli- 

cated, for example an unknown function of e/am, 

multiplying VI/‘, and some function of l , < %S’ >. 

and a. This means that it is important to test the a 

dependence of E separately from the ms dependence. 

The assumption that powers of E in the power 

deconfined. The quoted dependence on volume is ‘,-” series of step size errors are matched by powers of 



l/am, but not by powers of < @q > leads to the 

unfortunate conclusion that higher order integration 

schemes cannot reduce the unpleasant dependence 

of the step size on am, to better than linear power. 

Explicit calculations of error terms demonstrating 

this assumption would be useful. A much nicer sit- 

uation exists for pure gauge theories. The work of 

Zinn-Justin showing that the theories corresponding 

to Langevin simulations at finite and zero E are in the 

same universality class implies that discretization er- 

rors for fixed E vanish as n + 0. 57 The situation 

for full QCD simulations can be different, since the 

effective action is nonlocal. 

ods. It is possible that an improved Monte Carlo 

matrix inverse estimation may be quite competitive 

with the deterministic methods. If a deterministic 

method is found converging in O(G) sweeps 

(as optimistically suggested above), it is unlikely that 

any of the known Monte Carlo methods will be com- 

petitive. 

5. PSEUDOFERMIONS 

The bulk of algorithmic work in recent years 

has focused on algorithms based on the Weingarten- 

Petcher action and the closely related fermionic noise 

method of the Cornell group. The original pseudo- 

fermion algorithm of Fucito et al.* used a Metropolis 

simulation at each time step to estimate the ma- 

trix inverse for the force term, and there is very lit- 

tle doubt that this is a far more time consuming 

method than methods using the deterministic min- 

imum residual and conjugate gradient algorithms. 

However, just as subsequent work dramatically im- 

proved algorithms based on the Weingarten-Petcher 

action, improvements to the pseudofermion method 

may keep it competitive. 

The most obvious defect in the original pseudo- 

fermion method compared with other algorithms is 

the use of the Metropolis method to estimate the 

matrix inverse necessary for the fermionic force. This 

method is expected to require a number sweeps pro- 

portional to n~i~.~’ to include correctly the effects of 

the effects of the small eigenvalue fermionic modes. 

This may be remedied by the use of a first order 
Langevin equation, which is expected to have cor- 

relation times linear in ~~~~~~~ This method has re- 

cently been investigated by Hamber, 58 who is opti- 

mistic about its prospects. Even more effective may 

be the replacement of the small step size first order 

Langevin formula with the large step size overrelaxed 

method. It is not clear whether to expect determin- 

istic methods to be comparable in efficiency with the 

A second argument sometimes made against the 

pseudofermion approach has to do with the fact that 

in its small step size version, it may be thought of 

as a disguised version of the Langevin algorithm. 

(See, for example, Toussaint’s discussion.g) How- 

ever, although there are good theoretical reasons for 

expecting the superiority of the hybrid family over 

the Langevin family, so far they have not been con- 

clusively confirmed in large scale simulations. In ad- 

dition, algorithm comparisons highly dependent on 

the effects of systematic errors, which will be dif- 

ferent in pseudofermion-Langevin than in the usual 

Langevin. It might even be possible to develop a 

hybrid method using a pseudofermionic estimate of 

the fermionic force instead of a minimum residual or 

conjugate gradient based estimate, but the buildup 

during long trajectories of systematic errors from the 

quark matrix inversion reported by Gupta et al.l” 

might be a problem for this approach. 

The pseudofermion method has recently been 

investigated on medium sized lattices by Potvin et 

al.5g They emphasized the need for careful control 

of systematic errors and reached pessimistic conclu- 

sions regarding its effectiveness compared that of the 

hybrid algorithm. However, while there are some 

good reasons why the pseudofermionic approach has 

lost popularity lately, it is not definitively established 

whether or not an improved member of this family 

can turn out to be competitive. 

6. CONCLUSIONS 

An ideal approach to the study of algorithms 

would be: 

1. Calculate as many of the exponents and coef- 

ficients as possible in the expressions for the 

computing requirements of algorithms. 

2. Test the calculations numerically. 

large step size or small step size Monte Carlo meth- 3. Measure the uncalculated coefficients. 



4. Predict the ultimate computing requirements as 

parameters such as a, I’, and ms are scaled to 

their desired values. 

Ranges of reasonable guesses for the scaling be- 

havior of some existing algorithms are given in the 

following table. 

Algo- Step size t NP 

1 1 
(am*)’ ’ (4OD)’ (Ap 

11 
am, ’ oAqc0 

(.L-)iJ 

HMC $(&)i*’ &,& (.-L)iJ 

The least controversial guess for the exponent 

of -& in the inverse step size and in the number 

of matrix inversion sweeps N4 required is 1. The 

least controversial guess for the correlation length t 

governing critical slowing down is am,. The guesses 

regarding the step size and correlation length are par- 

ticularly uncertain at present. 

Current simulations of full QCD typically are 

done at values of rn: (- me) which are an order of 

magnitude larger than the physical value. The range 

of exponents in the table indicates a two order of 

magnitude uncertainty in the increase of CPU time 

required per site, were the simulations to be done at 

the physical value of m,. If I make the guess that 

the lattice spacing a needs to be less than 0.1 fermi, 

and may need to be as small as 0.03 to 0.05 fermi, 

there is a similar uncertainty due to this parameter, 

due to both scaling exponents and to the increase in 

the number of sites. 

The price of going to large physical volume may 

be less severe if the use of lattice sizes larger than 

the correlation length leads to a commensurate im- 

provement in statistics. (In addition to simply re- 

ducing finite volume errors, there are other reasons 

for doing simulations on the largest volume possi- 

ble: matrix inversion algorithms are better behaved 

on large volumes, “exceptional” configurations are 

rarer at large volumes, the large QED correlation 

times due to topological effects were reduced at large 

volumes.) 

Although we are not yet in a position to reli- 

ably predict computing requirements at the physi- 
/-. 

cal quark mass for given values of the volume and 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

lattice spacing, quite a bit is known, both theoreti- 

cally and numerically. A good understanding of all 

of the exponents and coefficients is an achievable 

goal, although perhaps just as difficult as a good 

understanding of the hadron spectrum itself. It is 

a desirable goal, both for the practical purpose of 

understanding computing requirements, and for pur- 

pose of understanding our theoretical tools. 

ACKNOWLEDGEMENTS 

I would like to thank Peter Lepage, Andreas 

Kronfeld. Doug Toussaint, and George Hackney for 

useful discussions. 

REFERENCES 
As suggested by Ken Wilson at this conference. 

G. Parisi in Progress in Gauge Field Theory, 
edited by G. ‘t Hooft et al. Plenum (1984) 531. 

D. Weingarten in Lattice 88, Nut. Phys. B 
(Proc. Suppl.) 9 (1989) 447. 

See the review by S. L Adler in Lattice 88, Nut. 
Phys. B (Proc. Suppl.) 9 (1989) 437. 

See the review by U. Wolff in these proceedings. 

D. Weingarten and D. Petcher, Phys. Lett B 99 
(1981) 333. 

G. G. Batrouni et al., Phys. Rev. D32 (1985) 
2736. 

F. Fucito et al., Nut. Phys. B180 (1981) 369. 

D. Toussaint in the proceedings of Near Devel- 
opments in Hardware and Software for Com- 
putational Physics, Buenos Aires (1988), to be 
published in Comput. Phys. Commun. 

R. Gupta et al., Phys. Rev. D 40 (1989) 2072. 

L. A. Hageman and D. M. Young, Applied It- 
erative Methods, Academic Press (1981). 

G. Katz et al., Phys. Rev. D 37 (1988) 1589. 

Y.3F)yanagi. Comp. Phys. Commun. 42 (1986) 

17. 

D. Henty, R. Setoodeh, and C. T. H. Davies, 
Glasgow preprint GUTPA/89/6/1. 

P. Rossi, C. T. H. Davies, and G. P. Lepage, 
Nut. Phys. B297 (1988) 287. 

Y. Oyanagi. J. Info. Proc. 11 (1987) 32. 

G. M. Hackney, in these proceedings. 



18. 

19. 

P. B. Mackenzie, unpublished. 42. 

T. A. DeGrand. Comput. Phys. Commun. 52 
(1988) 161. Hageman and Young call this tech- 
nique reduced system conjugate gradient. 

20. P. Rossi and C. T. H. Davies, Phys. Lett. 8202 
(1988) 547. 

21. 

22. 

M. Fukugita, private communication. 45. 

J. Polonyi et al. Phys. Rev. Lett. 53 1984 
644: 0. Martin arrd S. W. Otto, Phys. &ev. d 
31 (1985) 435. 

23. M. Fukugita. S. Ohta. Y. Oyanagi, and A. 
Ukawa, Phys. Lett. B 191 (1987) 164. 

G. Parisi and Y. S. Wu, Sci. Sin. 24 (1981) 483. 24. 

25. 

26 

27. 

D. Callaway and A. Rahman, Phys. Rev. D28 
(1983) 1506: J. Polonyi and H. W. Wyld. Phys. 
Rev. Lett. 51 (1983) 2257. 

S. Duane, Nut. Phys. B257 (1985) 652. 

S. Duane and J. Kogut. Nut. Phys. B275 [FS17] 
(1986) 398. 

28. R. T. Scaletter, D. J. Scalapino, and R. L. 
Sugar, Phys. Rev. 834. (1986) 7911. 

29. S. Duane, A. D. Kennedy, B. J. Pendleton, and 
D. Roweth, Phys. Lett. 8195 (1987) 216. 

30. 

31. 

5. Gottlieb et al., Phys. Rev. D 35 (1987) 2531. 

K. Bitar et al., Nut. Phys. 8313 (1989) 348, 
8313 (1989) 377. 

32. P. B. Mackenzie, Phys. Lett. B 226 (1989) 369. 

See also Weingarten’s comments.3 

33. 

34, 

M. Fukugita, Y. Oyanagi, and A. Ukawa, Phys. 
Rev. D 36 (1987) 824. 

A. Ukawa. in Lattice 88, NW. Phys. B (Proc. 
Suppl.) 9 (1989) 463. 

35. M. Fukugita and A. Ukawa, Nut. Phys. B 300 
[FS22] (1988) 433. 

36. From the talk by R. Gupta at this conference. 

37. J. Kogut. private communication. 

38. See, for example, V. I. Arnold, Molhemati- 
cd Methods of Ckrssical Mechanics, Springer- 
V&g, New York. 

39. G. Parisi, private communication. 

40. D. Toussaint, private communication. 

41. V. Grosch et al., Phys. Lett. 1628 (1985) 171. / 

43. 

44. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

See, for example, J. Smit and A. van der Sijs in 
these proceedings. 

C. T. H. Davies et al., Cornell preprint CLNS 
891947 (1989). 

J. B. Kogut. Nut. Phys. B275 [FS17] (1986) 1: 
S. Duane et al., Phys. Lett. B 176 (1986) 143. 

R. Gupta, G. W. Kilcup, and S. R. Sharpe, 
Phys. Rev. D 38 (1988) 1278. 

M. Creutz, Phys. Rev. D 38 (1988) 1228. 

A. D. Kennedy, in Lattice 88, NW. Phys. B 
(Proc. Suppl.) 9 (1989) 457. 

M. Campostrini and P. Rossi, Pisa preprint 
IFUP-TH 12/89 (1989). 

M. Creutz and A. Gocksch, Brookhaven 
preprint BNL 42601, (1989). 

A. D. Kennedy and B. J. Pendleton, in prepa- 
ration; H. Gausterer and M. Salmhofer, Phys. 
Rev. D 40 (1989) 2723. 

R. Gupta. in Lattice 88, Nut. Phys. B (Proc. 
Suppl.) 9 (1989) 473. 

M. Fukugita and A. Ukawa, Phys. Rev. D 38 
(1988) 1971. 

Figure 4 in S. Gottlieb et al., Phys. Rev. D 36 
(1987) 3797. 

G. Batrouni, Phys. Rev. D33 
S. Kronfeld, Phys. Lett B 172 

A. S. Kronfeld and P. B. Mackenzie, unpub- 
lished. 

A. Irbick, in these proceedings. 

J. Zinn-Justin, Nut. Phys. 8275 (1986) 135. 

H. Hamber, in these proceedings. 

J. Potvin et al., Lattice 88, Nut. Phys. B (Proc. 
Suppl.) 9 (1989) 490. 


